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Overview

o Lecture 1:
e Introduction to linear programming and the simplex algorithm.

e Pivoting rules.
e The RANDOMFACET pivoting rule.

o Lecture 2:

e The Hirsch conjecture.

o Introduction to Markov decision processes (MDPs).

e Upper bound for the LARGESTCOEFFICIENT pivoting rule for
MDPs.

o Lecture 3:

e Lower bounds for pivoting rules utilizing MDPs. Example:
BLAND’S RULE.

e Lower bound for the RANDOMEDGE pivoting rule.

e Abstractions and related problems.
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The simplex algorithm, Dantzig (1947)

maximize  c’x
subjectto Ax <b
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e A convex polytope (or polyhedron)
P in dimension d is a set of points

P={xeR?|Ax < b}

where A is an n X d matrix and b is a
vector in R".




e A convex polytope (or polyhedron)
P in dimension d is a set of points

P={xeRY|Ax < b}

where A is an n X d matrix and b is a
vector in R”.

@ l.e., P is the intersection of n
halfspaces a,-Tx < b;, where a,-T is the
i"th row of A.




Convex polytopes

e A convex polytope (or polyhedron)
P in dimension d is a set of points

P={xecR?| Ax < b}

where A is an n X d matrix and b is a
vector in R".

@ l.e., P is the intersection of n
halfspaces a,-Tx < b;, where aiT is the
i"th row of A.

@ P is bounded if there exists a
constant K such that for all x € P,
the absolute value of every component
x; is at most K. Otherwise P is
unbounded.
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e A point x € R? is a basic solution if
it satisfies d linearly independent
constraints, a,-Tx < bj, with equality.




e A point x € R? is a basic solution if
it satisfies d linearly independent
constraints, a,-Tx < bj, with equality.

e x € R? is a basic feasible solution if
x € P and x is a basic solution.




Convex polytopes

e A point x € R is a basic solution if "
it satisfies d linearly independent
constraints, a,-Tx < b;, with equality.
e x € R? is a basic feasible solution if
x € P and x is a basic solution.
@ x € P is a vertex (or corner) if there
exists a vector ¢ € RY such that for all
yeP, ify#xthenc’x>cTy.
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Convex polytopes

e A point x € R? is a basic solution if
it satisfies d linearly independent
constraints, a,-Tx < bj, with equality.

@ x € R? is a basic feasible solution if
x € P and x is a basic solution.

@ x € P is a vertex (or corner) if there
exists a vector ¢ € RY such that for all x
yeP, ify#xthenc'x>cTy.

@ Every basic feasible solution x is a
vertex of P.
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o If P is bounded, P can be equivalently
defined as the convex hull of its
vertices.




o If P is bounded, P can be equivalently
defined as the convex hull of its
vertices.

@ A k-face is a k dimensional polytope
defined by a set of vertices that satisfy
the same d — k constraints with
equality.

o A O-face is a vertex.

o A 1-face is an edge.
e A (d — 1)-face is a facet.




Convex polytopes

o If P is bounded, P can be equivalently
defined as the convex hull of its
vertices.

o A k-face is a k dimensional polytope
defined by a set of vertices that satisfy
the same d — k constraints with
equality.

o A 0O-face is a vertex.
o A 1-face is an edge.
o A (d —1)-face is a facet.

o Alternatively, a k-face is the polytope
obtained by eliminating d — k variables
using the d — k constraints that are
satisfied with equality.
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e A linear program (LP) is the
optimization problem:

maximize ¢’ x

s.t. Ax < b




e A linear program (LP) is the
optimization problem:

maximize ¢’ x

s.t. Ax < b

@ For simplicity, we generally assume
that a linear program is in canonical

form:
maximize ¢ x
s.t. Ax < b
x > 0

@ Every linear program has an equivalent
canonical form.



@ A constraint a,-Tx < b;j can be expressed equivalently as
(a,-Tx) + s; = b;, where s; > 0 is a non-negative slack
variable.



Linear programming

@ A constraint a,-Tx < bj can be expressed equivalently as
(a,-Tx) + s; = b;, where s; > 0 is a non-negative slack
variable.

@ A canonical form linear program can be transformed to
equational form (or standard form) by introducing n slack

variables:
maximize ¢ x maximize cTx
s.t. Ax < b s.t. Ax+1Is = b
x > 0 x,s > 0

The resulting linear program has m = d + n non-negative
variables.
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Linear programming

@ A constraint a,-Tx < bj can be expressed equivalently as
(a,-Tx) + s; = b;, where s; > 0 is a non-negative slack
variable.

@ A canonical form linear program can be transformed to
equational form (or standard form) by introducing n slack

variables:
maximize ¢ x maximize cTx
s.t. Ax < b s.t. Ax+1Is = b
x > 0 x,s > 0

The resulting linear program has m = d + n non-negative
variables.

@ Note that an inequality from the original linear program is
satisfied with equality if the corresponding (slack) variable is
zero in the equational form.
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@ Consider a linear program in equational form, defined by an
n X m matrix A, with m=d + n:

maximize ¢! x
s.t. Ax = b
x > 0



Linear programming

o Consider a linear program in equational form, defined by an
n X m matrix A, with m=d + n:

maximize ¢’ x
S.t. Ax = b
x > 0

@ A basis is a subset B C {1,..., m} of n linearly independent
columns of A.
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Linear programming

o Consider a linear program in equational form, defined by an
n X m matrix A, with m=d + n:

maximize ¢’ x
S.t. Ax = b
x > 0

@ A basis is a subset B C {1,..., m} of n linearly independent
columns of A.

@ Every basis B defines a basic solution xg € R™, as the unique
solution to:

Ax=b and VidB: x,=0
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Linear programming

o Consider a linear program in equational form, defined by an
n X m matrix A, with m=d + n:

maximize ¢’ x
S.t. Ax = b
x > 0

@ A basis is a subset B C {1,..., m} of n linearly independent
columns of A.

@ Every basis B defines a basic solution xg € R™, as the unique
solution to:

Ax=b and VidB: x,=0

@ Every basic solution x € R™ is defined by at least one basis. If
x is defined by more than one basis, x is a degenerate basic
solution.

Thomas Dueholm Hansen - Lecture 1 MADALGO & CTIC Summer School Page 9/32



@ A basic solution xg is feasible if xg > 0.



Linear programming

@ A basic solution xg is feasible if xg > 0.

@ For some basis B, the variables x;, for i € B, are called basic,
and the remaining variables are called non-basic.
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Linear programming

@ A basic solution xg is feasible if xg > 0.

@ For some basis B, the variables x;, for i € B, are called basic,
and the remaining variables are called non-basic.

e If xg is a basic feasible solution, then the non-basic variables
correspond to facets defining the vertex.
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Linear programming

@ A basic solution xg is feasible if xg > 0.
@ For some basis B, the variables x;, for i € B, are called basic,
and the remaining variables are called non-basic.
e If xg is a basic feasible solution, then the non-basic variables
correspond to facets defining the vertex.

@ The operation of exchanging a single basic variable in B with
a non-basic variable, producing a new basis B’, is called
pivoting.
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Linear programming

@ A basic solution xg is feasible if xg > 0.

@ For some basis B, the variables x;, for i € B, are called basic,
and the remaining variables are called non-basic.

e If xg is a basic feasible solution, then the non-basic variables
correspond to facets defining the vertex.

@ The operation of exchanging a single basic variable in B with
a non-basic variable, producing a new basis B’, is called
pivoting.

e Geometrically, if xg and xg/ are different basic feasible

solutions, pivoting corresponds to moving from xg to xgs along
an edge of the polytope.
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The simplex algorithm

The simplex algorithm, Dantzig (1947):

@ Start with some basis B corresponding to a basic feasible
solution xg.

@ Repeatedly perform pivots leading to new bases B’
corresponding to basic feasible solutions xg/ with better
values, c"xg > ¢ xg.

@ Stop when no pivot can increase the value further.
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Example: The tableau method

max 2x1 — 2xo — X3
1 2 2

st. 3x1—5x—35x3 < 1
xx+x3 < 2

X3 < 1

x1,x2,x3 > 0

@ Transform a linear program in canonical form to equational
form by introducing slack variables.
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Example: The tableau method

max 2x; — 2x» — X3

s.t. %Xl — %XQ — %X3 +x4 = 1
X +x3+x5 = 2

x3+x6 = 1

0

X1, X2, X3, X4, X5, X6 >

@ Transform a linear program in canonical form to equational
form by introducing slack variables.
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Example: The tableau method

max 2x1 — 2xo> — X3

st. x» = 1— %xl + %XQ + %X3
X5 = 2—Xp— X3
X = 1-— X3

X1, X2, X3, X4, X5, X6 > 0

@ Transform a linear program in canonical form to equational
form by introducing slack variables.

@ Pick a basis, in this case {4,5,6}, and express the basic
variables and the objective function in terms of non-basic
variables. This representation is called a tableau.
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Example: The tableau method

2T =(0,0,0,1,2,1)
max 2x1 — 2xo> — X3
st. x4 = 1-— %xl + %XQ + %X3
X5 = 2—Xp— X3
X = 1-— X3

X1, X2, X3, X4, X5, X6 > 0

@ Transform a linear program in canonical form to equational
form by introducing slack variables.

@ Pick a basis, in this case {4,5,6}, and express the basic
variables and the objective function in terms of non-basic
variables. This representation is called a tableau.

@ The corresponding basic solution and its value can be read by
setting the non-basic variables to zero.
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Example: The tableau method

2T =(0,0,0,1,2,1)

max 2x1 — 2xo> — X3

st. x» = 1— %xl + %XQ + %X3
X5 = 2—Xp— X3
X = 1-— X3

X1, X2, X3, X4, X5, X6 > 0

o If the coefficient of a non-basic variable x; in the objective
function is positive, increasing x; will improve the value.
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Example: The tableau method

2T =(0,0,0,1,2,1)

max 2x1 — 2xo> — X3

st. x» = 1— %xl + %XQ + %X3
X5 = 2—Xp— X3
X = 1-— X3

X1, X2, X3, X4, X5, X6 > 0

o If the coefficient of a non-basic variable x; in the objective
function is positive, increasing x; will improve the value.

@ x; can be increased until another basic variable x; becomes
zero, which completes the pivot. The basis is then updated by
exchanging i/ and j. If no variable becomes zero the value is

unbounded.
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Example: The tableau method

{1,3,5}

2T = (3,0,0,0,2,1)

max 6 + 2xy> + 3x3 — 6x4

st. x1 = 3+2x0+2x3—3xa
X5 = 2—X2— X3
X = ]_—X3
X1, X2, X3, X4, X5, X6 2> 0

o If the coefficient of a non-basic variable x; in the objective
function is positive, increasing x; will improve the value.

@ x; can be increased until another basic variable x; becomes
zero, which completes the pivot. The basis is then updated by
exchanging i/ and j. If no variable becomes zero the value is
unbounded.
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Example: The tableau method

{1,2,3}
2T = (7,2,0,0,0,1)

max 10+ x3 — 6xg3 — 2x5

st. x3 = 7—3x3 —2xs
Xo = 2—Xx3— Xs
X — 1-— X3

X1, X2, X3, X4, X5,%X6 > 0
(2,4

o If the coefficient of a non-basic variable x; in the objective
function is positive, increasing x; will improve the value.

@ x; can be increased until another basic variable x; becomes
zero, which completes the pivot. The basis is then updated by
exchanging i/ and j. If no variable becomes zero the value is
unbounded.
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Example: The tableau method

{1,3,5} {1,2,3}

max 11 —6x3 — 2x5 — Xp

st. x1 = 7—3x4 —2x5
x2 = 1—x5+ X6
X3 = 1-— X6

X1, X2, X3, X4, X5, X6 > 0

o If the coefficient of a non-basic variable x; in the objective
function is positive, increasing x; will improve the value.

@ x; can be increased until another basic variable x; becomes

zero, which completes the pivot. The basis is then updated by

exchanging i/ and j. If no variable becomes zero the value is
unbounded.

@ When all coefficients are negative, the solution is optimal.
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The tableau method, formally

o Let B be a basis, and let A= [Ag | Ag] and xT = [x§ | xJ].
l.e., Ap is the matrix of basic columns and Ag is the matrix of
non-basic columns, and similar for x.

@ The tableau method rewrites the linear program:

max c¢!x max cg,—Aglb + e'x
st. Ax = b st. xg = Ag'b—Az'Agxg
x > 0 x > 0

where ¢ € R™ is the vector of reduced costs:

c=c—(Az'A)Tcg
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Pivoting rules

@ Two choices must be made when pivoting:

@ Which non-basic variable with positive coefficient enters the
basis?
@ Which basic variable leaves the basis, in case of a tie?

These choices are specified by a pivoting rule.
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Pivoting rules

@ Two choices must be made when pivoting:

@ Which non-basic variable with positive coefficient enters the
basis?
@ Which basic variable leaves the basis, in case of a tie?

These choices are specified by a pivoting rule.

e LARGESTCOEFFICIENT, Dantzig (1947)
e The non-basic variable with largest coefficient enters the basis.
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Pivoting rules

@ Two choices must be made when pivoting:

@ Which non-basic variable with positive coefficient enters the
basis?
@ Which basic variable leaves the basis, in case of a tie?

These choices are specified by a pivoting rule.

e LARGESTCOEFFICIENT, Dantzig (1947)
e The non-basic variable with largest coefficient enters the basis.
o LARGESTINCREASE

e The non-basic variable that gives the largest increase enters
the basis.
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Pivoting rules

Two choices must be made when pivoting:

@ Which non-basic variable with positive coefficient enters the
basis?
@ Which basic variable leaves the basis, in case of a tie?

These choices are specified by a pivoting rule.

LARGESTCOEFFICIENT, Dantzig (1947)
e The non-basic variable with largest coefficient enters the basis.
o LARGESTINCREASE

e The non-basic variable that gives the largest increase enters
the basis.

STEEPESTEDGE

e The non-basic variable whose pivot corresponds to the edge
with direction closest to ¢ enters the basis.
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Pivoting rules

@ If the current basic feasible solution is degenerate, it is

possible that the value does not increase when pivoting.

@ Such situations may lead to cycling. The following two
pivoting rules do not cycle, however.
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Pivoting rules

@ If the current basic feasible solution is degenerate, it is
possible that the value does not increase when pivoting.

@ Such situations may lead to cycling. The following two
pivoting rules do not cycle, however.

e BLAND’S RULE, Bland (1977)

e Always pick the available variable with the smallest index, both
for entering and leaving the basis.
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Pivoting rules

@ If the current basic feasible solution is degenerate, it is
possible that the value does not increase when pivoting.

@ Such situations may lead to cycling. The following two
pivoting rules do not cycle, however.

e BLAND’S RULE, Bland (1977)

e Always pick the available variable with the smallest index, both
for entering and leaving the basis.

e LEXICOGRAPHIC RULE, Dantzig, Orden and Wolfe (1955)

e Pick any variable x; with positive coefficient for entering the
basis.

e Pick x; for leaving the basis such that the right-hand-side
coefficients in the tableau are lexicographically smallest when
divided by the coefficient of x; in that row.

e This corresponds to a small pertubation of the b vector.
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@ SHADOWVERTEX

o Let xg be some initial basic feasible solution, and let ¢y be a
vector for which ¢J xo is optimal. Define:

max (1 —A)cd x + AcTx
s.t.  Ax b
X 0

VAN



Pivoting rules

@ SHADOWVERTEX

o Let xp be some initial basic feasible solution, and let ¢y be a

vector for which ¢J xo is optimal. Define:

max (1 —\)¢d x + AcTx
s.t.  Ax

e Maintain an optimal solution for A going from 0 to 1.
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Pivoting rules

@ SHADOW VERTEX
o Let xp be some initial basic feasible solution, and let ¢y be a
vector for which ¢J xo is optimal. Define:

max (1 —\)¢d x + AcTx
s.t.  Ax

e Maintain an optimal solution for A going from 0 to 1.
e This corresponds to moving along edges of a 2-dimensional
projection of the polytope (a “shadow”).
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Pivoting rules

@ SHADOW VERTEX
o Let xp be some initial basic feasible solution, and let ¢y be a
vector for which ¢J xo is optimal. Define:

max (1 —\)¢d x + AcTx
s.t.  Ax

e Maintain an optimal solution for A going from 0 to 1.

e This corresponds to moving along edges of a 2-dimensional
projection of the polytope (a “shadow”).

e Vertices and edges of the projection correspond to vertices and
edges of the original polytope.
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Pivoting rules

@ SHADOWVERTEX

o Let xp be some initial basic feasible solution, and let ¢y be a
vector for which ¢J xo is optimal. Define:

max (1 — A)cd x + Acx
st. Ax = b
x > 0
e Maintain an optimal solution for A going from 0 to 1.
e This corresponds to moving along edges of a 2-dimensional
projection of the polytope (a “shadow”).
e Vertices and edges of the projection correspond to vertices and
edges of the original polytope.
e Spielman and Teng (2004) gave a smoothed analysis of the

SHADOWVERTEX pivoting rule, showing that it is polynomial
under certain pertubations of the linear program.
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Lower bounds

All the previous pivoting rules are known to require exponentially
many steps in the worst case:

@ LARGESTCOEFFICIENT: Klee and Minty (1972), the
Klee-Minty cube!.

@ LARGESTINCREASE: Jeroslow (1973).

e STEEPESTEDGE: Goldfarb and Sit (1979).

e BLAND’S RULE: Avis and Chvatal (1978).

e SHADOWVERTEX: Murty (1980), o
Goldfarb (1983). 1.0.1)

0,1, 1)

@ Amenta and Ziegler (1996) gave a L
unified view of all these lower bounds. 0.1.0

(0,0,0)

/X2

(1,1,0
(1,0,0) /

X1

!Picture from Gartner, Henk and Ziegler (1998)
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o RANDOMEDGE

e Let a uniformly random non-basic variable with positive
coefficient enter the basis.



More pivoting rules

o RANDOMEDGE
e Let a uniformly random non-basic variable with positive
coefficient enter the basis.

e RANDOMFACET, Kalai (1992) and Matougek, Sharir and
Welzl (1992)
e Pick a uniformly random facet that contains the current vertex,
and recursively find an optimal solution within that facet. If
possible, make an improving pivot leaving the facet and repeat.
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More pivoting rules

o RANDOMEDGE
e Let a uniformly random non-basic variable with positive
coefficient enter the basis.

e RANDOMFACET, Kalai (1992) and Matougek, Sharir and
Welzl (1992)

e Pick a uniformly random facet that contains the current vertex,
and recursively find an optimal solution within that facet. If
possible, make an improving pivot leaving the facet and repeat.

e This randomized pivoting rule finds an optimal solution in an
expected subexponential, 200V (1=d)loen) “nymber of steps.
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More pivoting rules

e RANDOMEDGE

e Let a uniformly random non-basic variable with positive
coefficient enter the basis.

e RANDOMFACET, Kalai (1992) and Matougek, Sharir and
Welzl (1992)

e Pick a uniformly random facet that contains the current vertex,
and recursively find an optimal solution within that facet. If
possible, make an improving pivot leaving the facet and repeat.

e This randomized pivoting rule finds an optimal solution in an
expected subexponential, 200V ("=d)1gn) " nymber of steps.

@ RANDOMIZED BLAND’S RULE

e Reorder the indices of the variables according to a random
permutation and use BLAND’S RULE.
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More pivoting rules

o RANDOMEDGE
e Let a uniformly random non-basic variable with positive
coefficient enter the basis.

e RANDOMFACET, Kalai (1992) and Matougek, Sharir and
Welzl (1992)

e Pick a uniformly random facet that contains the current vertex,
and recursively find an optimal solution within that facet. If
possible, make an improving pivot leaving the facet and repeat.

e This randomized pivoting rule finds an optimal solution in an

expected subexponential, 200V ("=d)1gn) " nymber of steps.
@ RANDOMIZED BLAND’S RULE

e Reorder the indices of the variables according to a random
permutation and use BLAND’S RULE.

e LEASTENTERED, Zadeh (1980)

e Pick the non-basic variable that has previously entered the
basis the fewest number of times.
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New lower bounds

e Friedmann, Hansen and Zwick (2011) proved lower bounds of

subexponential form (2(9%), for a < 1) for the worst-case
expected number of steps of the pivoting rules:

o RANDOMEDGE
o RANDOMFACET
e RANDOMIZED BLAND’S RULE
e Friedmann (2011) proved a subexponential lower bound for
the worst-case number of steps required for the
LEASTENTERED pivoting rule.

@ These lower bounds are based on a tight connection between
Markov decision processes and linear programs.
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Solving linear programs

@ Linear programs can be solved in polynomial time:
o Khachiyan (1979): The ellipsoid method
o Karmarkar (1984): The interior point method
e Best complexity results - Renegar (1988), Gonzaga (1989),
Roos and Vial (1990): O(n3L) arithmetic operations, where L
is the bit complexity. Based on the interior point method.
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Solving linear programs

@ Linear programs can be solved in polynomial time:
o Khachiyan (1979): The ellipsoid method
o Karmarkar (1984): The interior point method
o Best complexity results - Renegar (1988), Gonzaga (1989),
Roos and Vial (1990): O(n3L) arithmetic operations, where L
is the bit complexity. Based on the interior point method.

e Let T(d,n) and Tg(d, n) be the maximum (expected)
number of arithmetic operations required for deterministic and
randomized algorithms, respectively, for solving any linear
program in d-space with n constraints.
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Solving linear programs

@ Linear programs can be solved in polynomial time:
o Khachiyan (1979): The ellipsoid method
o Karmarkar (1984): The interior point method
o Best complexity results - Renegar (1988), Gonzaga (1989),
Roos and Vial (1990): O(n3L) arithmetic operations, where L
is the bit complexity. Based on the interior point method.

e Let T(d,n) and Tg(d, n) be the maximum (expected)
number of arithmetic operations required for deterministic and
randomized algorithms, respectively, for solving any linear
program in d-space with n constraints.

@ The best bound for Tr(d, n) is subexponential in d. No
subexponential bound is known for T(d, n).
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Solving linear programs

@ Linear programs can be solved in polynomial time:
o Khachiyan (1979): The ellipsoid method
o Karmarkar (1984): The interior point method
o Best complexity results - Renegar (1988), Gonzaga (1989),
Roos and Vial (1990): O(n3L) arithmetic operations, where L
is the bit complexity. Based on the interior point method.

e Let T(d,n) and Tg(d, n) be the maximum (expected)
number of arithmetic operations required for deterministic and
randomized algorithms, respectively, for solving any linear
program in d-space with n constraints.

@ The best bound for Tr(d, n) is subexponential in d. No
subexponential bound is known for T(d, n).

e Finding a (strongly) polynomial bound for T(d, n) and
Tr(d, n) is a major open problem in linear programming.
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Solving linear programs

@ Linear programs can be solved in polynomial time:
o Khachiyan (1979): The ellipsoid method
o Karmarkar (1984): The interior point method
o Best complexity results - Renegar (1988), Gonzaga (1989),
Roos and Vial (1990): O(n3L) arithmetic operations, where L
is the bit complexity. Based on the interior point method.

e Let T(d,n) and Tg(d, n) be the maximum (expected)
number of arithmetic operations required for deterministic and
randomized algorithms, respectively, for solving any linear
program in d-space with n constraints.

@ The best bound for Tr(d, n) is subexponential in d. No
subexponential bound is known for T(d, n).

e Finding a (strongly) polynomial bound for T(d, n) and
Tr(d, n) is a major open problem in linear programming.
e A polynomially bounded pivoting rule that performs each step
in polynomial time would give such a bound.
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The RANDOMFACET pivoting rule

e RANDOMFACET, Kalai (1992):
@ Pick a uniformly random facet f that contains the current
basic feasible solution x.

@ Recursively find the optimal solution x’ within the picked facet
f

© |If possible, make an improving pivot from x’, leaving the facet
f, and repeat from (1). Otherwise return x’.
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The RANDOMFACET pivoting rule

e RANDOMFACET, Kalai (1992):
@ Pick a uniformly random facet f that contains the current
basic feasible solution x.

@ Recursively find the optimal solution x’ within the picked facet
f

© |If possible, make an improving pivot from x’, leaving the facet
f, and repeat from (1). Otherwise return x’.

@ A dual variant of the RANDOMFACET pivoting rule was
discovered independently by MatouZek, Sharir and Welzl
(1992).
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The RANDOMFACET pivoting rule

P

@ Pick a uniformly random facet f; that contains the current
basic feasible solution x.
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The RANDOMFACET pivoting rule

P

h

@ Pick a uniformly random facet f; that contains the current
basic feasible solution x.
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The RANDOMFACET pivoting rule

@ Recursively find the optimal solution x” within the picked
facet f;.
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The RANDOMFACET pivoting rule

P

@ If possible, make an improving pivot from x’, leaving the facet
f;, and repeat from the beginning. Otherwise return x’.
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The RANDOMFACET pivoting rule

P

@ Note that if the facets f1, ..., fy containing x are ordered
according to their optimal value, then from x” we never visit
fi,...,f; again.
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The RANDOMFACET pivoting rule

@ The number of pivoting steps for a linear program with d
variables and n constraints, including non-negativity
constraints, is at most:

d
1 .
f(d,n)gf(d—l,n—1)+1+dE_lf(d,n—l)

with f(d,n) =0 for n < d.
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The RANDOMFACET pivoting rule

@ The number of pivoting steps for a linear program with d
variables and n constraints, including non-negativity
constraints, is at most:

d
1 .
f(d,n)gf(d—l,n—1)+1+dE_lf(d,n—l)

with f(d,n) =0 for n < d.
@ Solving the corresponding recurrence gives:

f(d, n) < 20(\/(nfd) log n)
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The RANDOMFACET pivoting rule

@ The RANDOMFACET pivoting rule can also be applied to the
dual LP, which has n — d free variables and n inequality
constraints. It follows that:

Tr(d,n) = min {QO(W)720(W)}
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The RANDOMFACET pivoting rule

@ The RANDOMFACET pivoting rule can also be applied to the
dual LP, which has n — d free variables and n inequality
constraints. It follows that:

Tr(d,n) = min {QO(W),zo(W)}

e Clarkson (1988) showed that:

Tr(d,n) = O(d?n + d*/nlog n + Tr(d,9d?)d? log n)
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The RANDOMFACET pivoting rule

@ The RANDOMFACET pivoting rule can also be applied to the
dual LP, which has n — d free variables and n inequality
constraints. It follows that:

TR(d7 n) = min {20(\/(n—d) log n), 20(\/dlog n)}
e Clarkson (1988) showed that:
Tr(d,n) = O(d?n + d*/nlog n + Tr(d,9d?)d? log n)

@ By combining Clarkson's algorithm and the RANDOMFACET
algorithm applied to the dual we get:

Tr(d, n) = O(d?n + 20(/dlogd))
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The RANDOMFACET pivoting rule

@ The RANDOMFACET pivoting rule can also be applied to the
dual LP, which has n — d free variables and n inequality
constraints. It follows that:

TR(d7 n) = min {20(\/(n—d) log n), 20(\/dlog n)}
e Clarkson (1988) showed that:
Tr(d,n) = O(d?n + d*/nlog n + Tr(d,9d?)d? log n)

@ By combining Clarkson's algorithm and the RANDOMFACET
algorithm applied to the dual we get:

Tr(d, n) = O(d?n + 20(/dlogd))

@ This is the best known bound for Tg(d, n). l.e., the best
bound independent of the bit complexity.
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RANDOMFACET: Non-recursive version

@ The recursion of the RANDOMFACET pivoting rule can be
unrolled, and the algorithm can be equivalently stated as:

© Start with a random permutation xp, ..., xg of the non-basic
variables.

@ Let x; be the first variable with positive coefficient according
to the permutation. Make a pivot exchanging x; with some
other variable x in the basis.

© Replace x; by x in the list of non-basic variables and randomly
permute the first / variables. Repeat from (2).
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RANDOMFACET: Non-recursive version

@ The recursion of the RANDOMFACET pivoting rule can be
unrolled, and the algorithm can be equivalently stated as:

© Start with a random permutation xp, ..., xg of the non-basic
variables.

@ Let x; be the first variable with positive coefficient according
to the permutation. Make a pivot exchanging x; with some
other variable x in the basis.

© Replace x; by x in the list of non-basic variables and randomly
permute the first / variables. Repeat from (2).

@ The procedure resembles the RANDOMIZED BLAND’S RULE,
but the expected number of steps is different.

Thomas Dueholm Hansen - Lecture 1 MADALGO & CTIC Summer School Page 25/32



RANDOMFACET: Non-recursive version

@ The recursion of the RANDOMFACET pivoting rule can be
unrolled, and the algorithm can be equivalently stated as:

© Start with a random permutation xp, ..., xg of the non-basic
variables.

@ Let x; be the first variable with positive coefficient according
to the permutation. Make a pivot exchanging x; with some
other variable x in the basis.

© Replace x; by x in the list of non-basic variables and randomly
permute the first / variables. Repeat from (2).

@ The procedure resembles the RANDOMIZED BLAND’S RULE,
but the expected number of steps is different.

@ Open problem: Is there a subexponential upper bound on
the expected number of pivoting steps performed by the
RANDOMIZED BLAND’S RULE?
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Duality

T

maximize c¢'x
s.t. Ax = b
x > 0

@ Basic feasible solutions give immediate lower bounds on the
optimal value z*. Is there a simple way to get upper bounds?
@ The optimal solution must satisfy any linear combination
y € R” of the equality constraints.

Thomas Dueholm Hansen - Lecture 1 MADALGO & CTIC Summer School Page 26/32



Duality

T

maximize c¢'x
s.t. Ax = b
x > 0

@ Basic feasible solutions give immediate lower bounds on the
optimal value z*. Is there a simple way to get upper bounds?
@ The optimal solution must satisfy any linear combination
y € R” of the equality constraints.
o If we can construct a linear combination of the equality
constraints y " (Ax) = y " b, for y € R", such that
c"x < yT(Ax), then y"(Ax) = yT b is an upper bound on z*.
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Duality

T

maximize ¢’ x minimize b7y
(P) s.t. Ax N g D) .. ATy >
x >

@ Basic feasible solutions give immediate lower bounds on the
optimal value z*. Is there a simple way to get upper bounds?
@ The optimal solution must satisfy any linear combination
y € R” of the equality constraints.
o If we can construct a linear combination of the equality
constraints y " (Ax) = y " b, for y € R", such that
c"x < yT(Ax), then y"(Ax) = yT b is an upper bound on z*.
@ The problem of finding the best such upper bound can be
formulated as a dual linear program (D). The original linear
program (P) is referred to as primal.
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Duality

T

maximize ¢’ x minimize b7y
(P) s.t. Ax N g D) .. ATy >
x >

@ Basic feasible solutions give immediate lower bounds on the
optimal value z*. Is there a simple way to get upper bounds?

@ The optimal solution must satisfy any linear combination
y € R” of the equality constraints.

o If we can construct a linear combination of the equality
constraints y " (Ax) = y " b, for y € R", such that
c"x < yT(Ax), then y"(Ax) = yT b is an upper bound on z*.

@ The problem of finding the best such upper bound can be
formulated as a dual linear program (D). The original linear
program (P) is referred to as primal.

@ By the strong duality theorem, (P) and (D) have the same
value, assuming that (P) is feasible and has a maximal value.

Thomas Dueholm Hansen - Lecture 1 MADALGO & CTIC Summer School Page 26/32



min by

s.t.
s.t.
(P) =b (D)
>0

e Consider a primal linear program (P) and its dual (D).



RANDOMFACET: Dual view

min
s.t.
max
s.t.
(P) =0 (D)

%
o

e Consider a primal linear program (P) and its dual (D).
@ Recall that the non-basic variables for some basis B
correspond to facets that contain the basic feasible solution

XB.
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RANDOMFACET: Dual view

min
s.t.

mox [T W .
A

s.t
(P) x = b (D)

N W] >o i

B 1

e Consider a primal linear program (P) and its dual (D).

@ Recall that the non-basic variables for some basis B
correspond to facets that contain the basic feasible solution
XB.

@ Staying within a facet f; means that the variable x; stays
non-basic.
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RANDOMFACET: Dual view

min
s.t.
max [T W«
s.t.
(P) z = b (D)

A
N W] >o i
B 1

e Consider a primal linear program (P) and its dual (D).

@ Recall that the non-basic variables for some basis B
correspond to facets that contain the basic feasible solution
XB.

@ Staying within a facet f; means that the variable x; stays
non-basic.

@ l.e., x; is fixed to 0, which is like removing the i'th column of
A, or for the dual like removing the /'th constraint.
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@ Let H be the set of constraints (halfspaces) of the dual.

@ Every subset of constraints G C H defines a linear program.



RANDOMFACET: Dual view

@ Let H be the set of constraints (halfspaces) of the dual.

@ Every subset of constraints G C H defines a linear program.

@ Let zg be the optimal value of the linear program defined by
G.
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RANDOMFACET: Dual view

@ Let H be the set of constraints (halfspaces) of the dual.

@ Every subset of constraints G C H defines a linear program.

@ Let zg be the optimal value of the linear program defined by
G.

e If z¢ is finite, then the corresponding primal LP has the same
optimal solution.
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RANDOMFACET: Dual view

Let H be the set of constraints (halfspaces) of the dual.

Every subset of constraints G C H defines a linear program.

Let zg be the optimal value of the linear program defined by
G.
e If z¢ is finite, then the corresponding primal LP has the same
optimal solution.

A basis for the dual refers to n linearly independent
constraints. l.e., a basic solution.

@ A basis BC G C H is optimal for G if zg = z¢.
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RANDOMFACET: Dual view

Let H be the set of constraints (halfspaces) of the dual.

Every subset of constraints G C H defines a linear program.

Let zg be the optimal value of the linear program defined by
G.
e If z¢ is finite, then the corresponding primal LP has the same
optimal solution.

A basis for the dual refers to n linearly independent
constraints. l.e., a basic solution.

A basis B C G C H is optimal for G if zg = z¢.
A constraint h is violated by B if zg < zgyp-
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RANDOMFACET: Dual view

Let H be the set of constraints (halfspaces) of the dual.

Every subset of constraints G C H defines a linear program.

Let zg be the optimal value of the linear program defined by
G.
e If z¢ is finite, then the corresponding primal LP has the same
optimal solution.

A basis for the dual refers to n linearly independent
constraints. l.e., a basic solution.

A basis B C G C H is optimal for G if zg = z¢.
A constraint h is violated by B if zg < zgyp-

e If his violated by a basis B, then zg is not optimal for the
corresponding primal LP, and adding h to the basis must be an
improving pivot.
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@ The dual RANDOMFACET algorithm starts with a basis B
such that zg > —o0.



RANDOMFACET: Dual view

@ The dual RANDOMFACET algorithm starts with a basis B
such that zg > —oc.

@ Any basic feasible solution of the primal LP gives such a basis,
but the algorithm works even if the corresponding basic
solution in the primal is not feasible.
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RANDOMFACET: Dual view

@ The dual RANDOMFACET algorithm starts with a basis B
such that zg > —oc.

@ Any basic feasible solution of the primal LP gives such a basis,
but the algorithm works even if the corresponding basic
solution in the primal is not feasible.

@ RANDOMFACET, dual view, Matousek, Sharir and Welzl
(1992):
© Remove a uniformly random constraint h € H that is not in
the current basis B.
@ Recursively find an optimal basis B’ for H \ {h}.
© If B’ violates h repeat from the beginning, starting with the
optimal basis B” for B’ U {h}. Otherwise return B’.
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@ Order constraints h € H '\ B such that:

Zi\(h}y S ZH\(h) S0 S Zgey S o0 S OZE\{hpoa)



Repeating the analysis

@ Order constraints h € H '\ B such that:
Zi\{m} S ZH\{h} S -0 S ZE\{h} S -0 S ZH\{hpo,}

o If zgn > zyp\ (p,y, then after reaching B” the constraints
h1, ..., h; must remain in the basis until termination.
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Repeating the analysis

@ Order constraints h € H '\ B such that:
Zi\{m} S ZH\{h} S -0 S ZE\{h} S -0 S ZH\{hpo,}

o If zgn > zyp\ (p,y, then after reaching B” the constraints
h1, ..., h; must remain in the basis until termination.

e This corresponds to the facets never being visited again.
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Repeating the analysis

@ Order constraints h € H '\ B such that:
Zi\{m} S ZH\{h} S -0 S ZE\{h} S -0 S ZH\{hpo,}

o If zgn > zyp\ (p,y, then after reaching B” the constraints
h1, ..., h; must remain in the basis until termination.

e This corresponds to the facets never being visited again.

@ The number of steps is bounded by:

m—n

1
fo(k =fplk,m—1 14+ — folk —i
D( 7m) D( , M )+ +m_n; D( ’7m)

where k is the number of unfixed constraints (the “hidden
dimension™), and fp(m, k) =0 for m < k or k < 0.

e Again, fp(k, m) < 20(Vklogm)
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LP-type problems

An LP-type problem, (H,w), is defined as follows:
e H={1,...,m} is a finite set.

o w: 2" — Wiis a function that maps subsets of H to a linearly
ordered set (W, <) with minimal value —oo, such that:
@ Monotonicity: For all F C G C H, w(F) < w(G).
@ Locality: For all F C G C H with —oo < w(F) = w(G), and
any h e H:

w(G) <w(GU{h}) = w(F)<w(FU{h})
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An LP-type problem, (H,w), is defined as follows:
e H={1,...,m} is a finite set.
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ordered set (W, <) with minimal value —oo, such that:
@ Monotonicity: For all F C G C H, w(F) < w(G).
@ Locality: For all F C G C H with —oo < w(F) = w(G), and
any h e H:

w(G) <w(GU{h}) = w(F)<w(FU{h})

@ B C H is an optimal basis if w(B) = w(H), and for every
proper subset B’ C B, w(B’) < w(B).
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LP-type problems

An LP-type problem, (H,w), is defined as follows:
e H={1,...,m} is a finite set.

o w: 2" — Wiis a function that maps subsets of H to a linearly
ordered set (W, <) with minimal value —oo, such that:
@ Monotonicity: For all F C G C H, w(F) < w(G).
@ Locality: For all F C G C H with —oo < w(F) = w(G), and
any h e H:

w(G) <w(GU{h}) = w(F)<w(FU{h})

@ B C H is an optimal basis if w(B) = w(H), and for every
proper subset B’ C B, w(B’) < w(B).

@ Goal: Find an optimal basis for H.

Thomas Dueholm Hansen - Lecture 1 MADALGO & CTIC Summer School Page 31/32



LP-type problems

An LP-type problem, (H,w), is defined as follows:
e H={1,...,m} is a finite set.

o w: 2" — Wiis a function that maps subsets of H to a linearly
ordered set (W, <) with minimal value —oo, such that:
@ Monotonicity: For all F C G C H, w(F) < w(G).
@ Locality: For all F C G C H with —oo < w(F) = w(G), and
any h e H:

w(G) <w(GU{h}) = w(F)<w(FU{h})

@ B C H is an optimal basis if w(B) = w(H), and for every
proper subset B’ C B, w(B’) < w(B).

@ Goal: Find an optimal basis for H.

The dual RANDOMFACET algorithm can be applied to any
LP-type problem.
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Overview

o Lecture 1:
e Introduction to linear programming and the simplex algorithm.

e Pivoting rules.
e The RANDOMFACET pivoting rule.

o Lecture 2:

e The Hirsch conjecture.

o Introduction to Markov decision processes (MDPs).

e Upper bound for the LARGESTCOEFFICIENT pivoting rule for
MDPs.

o Lecture 3:

e Lower bounds for pivoting rules utilizing MDPs. Example:
BLAND’S RULE.

e Lower bound for the RANDOMEDGE pivoting rule.

e Abstractions and related problems.
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